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Abstract. In recent years a great interest in the study of the association of magnetic with biological material for bioapplica-
tions has been observed in the literature. This work analyses the development of new magnetic biocomposite films from a
magnetic ferrite and a biopolymer. Magnetic and dielectric properties of Y3FesOi2 (YIG)/collagen composite films were
studied as a function of the YIG concentration. This biocomposite was also characterized by Infrared Spectroscopy (IR),
Thermal Analysis (DSC and TG) and scanning electron microspcopic (SEM) methods. The magnetization and dielectric
measurements were performed at room temperature. The results demonstrated that ferrimagnetic garnet (YIG) and collagen
(Col) can be used to obtain a homogeneous composite. All the composite films showed a ferromagnetic behavior and they
were characterized as a soft magnet material. These results show that Col-YIG biocomposites are biological films with
magnetic properties that can be employed as a versatile performance materials, due to their flexible dielectric and magnetic
features. They could be used as electronic devices in biological applications.
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1. Introduction

Magnetic particles have been studied due to their
important versatility in bioapplications as magnetic
resonance imaging (MRI) contrast agents, for can-
cer tumor detection, hyperthermia, drug delivery,
selective separation and biomolecules detection
[1]. For these applications, the particles must have
combined properties of high magnetic saturation,
biocompatibility and interactive functions at the
surface [2]. The surfaces could be modified through
the creation of few atomic layers of organic poly-
mers, inorganic metallic or oxide surface.

*Corresponding author, e-mail: fechine @ufc.br
© BME-PT

This kind of material can also be used in electronic
devices as magnetic recording, microwave compo-
nents and permanent magnetic devices [3]. Mag-
netic ceramics are used in a number of applications
such as radar-signal absorbing, magnetic printing,
magnetic levitation etc. Yttrium iron garnet (YIG)
is a good example of this. It is frequently used in
microwave device applications such as mobile
communication systems or satellite broadcast sys-
tems [4]. This ferrimagnetic garnet has cubic struc-
ture (space group Ia3d) and formula Y3FesO12. A
new generation of devices (such as delay lines, tun-
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ing filters and oscillators, isolators and bubble-stor-
age memory units) has been developed on YIG
basis [5, 6].

There is a lot of research on the association of mag-
netic with biological materials. For example, Kim
and co-workers [7] have obtained microspheres of
Fe;04 encapsulated with chitosan as a MRI image
contrast, while Jain and co-workers [8] obtained
magnetic nanoparticles coated with Oleic-Pluronic
for sustained delivery of cancer agents. Matsumine
and co-workers [9] have developed a new hyper-
thermic treatment modality using magnetic materi-
als (calcium phosphate cement containing Fe3O4)
for metastatic bone tumors.

In this sense, biological molecules are important to
change the magnetic component into a bio-inert
composite. Collagen is the most abundant of the
fibrous proteins and it constitutes more than 25% of
the protein mass in the human body. It constitutes
part of the fibrous connective tissues of skin, bones,
tendons, cartilages, blood vessels, and teeth. Indi-
vidual molecules of collagen, which are semi flexi-
ble rods ~280 nm in length and ~1 nm in diameter,
undergo self-assembly to form interwoven net-
work-like structures, ranging from long fibrils to
complex structures [10]. They could be used to
obtain magnetic composite films with new proper-
ties.

This study reports on the synthesis, structure and
dielectric-magnetic behavior of the biocomposite
material obtained from a ferrite (YIG) and a colla-
gen membrane. Through experimentation we con-
firm the interaction between ferrite particles and
collagen to obtain a natural composite with mag-
netic properties.

2. Material and methods
2.1. Ferrimagnetic particle

The preparation of the ferrimagnetic particles was
performed by methods used by Fechine and co-
workers [11], where stoichiometric amounts of
Y203 (99.99%, Aldrich) and Fe2O3 (99.00%,
Aldrich) were used in the YIG preparation. The
material was grounded on a Fritsch (Idar-Oberstein,
Germany) Pulverisette 6 planetary mill in sealed
stainless steel vials (221.69 cm?®) and balls
(#10 mm) under air in weight ratio 1/9 (wt. of mix-
ture powder/wt. of balls). Mechanical alloying was
performed for 1h of milling with 370 rpm. After
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this, the powder was submitted to calcination in air
at 1150°C for 5 h. The reaction occurring during
calcination can be summarized as shown by Equa-
tion (1):

3Y203 + 5Fex03 — 2Y3FesO12 (YIG) (D)

2.2, Preparation of soluble collagen

The anionic collagen was prepared from intestinal
bovine serosa by selective hydrolysis of amide
groups using 50 g of intestinal bovine serosa, in the
wet state and treated at 20°C for 72 h with an alka-
line solution (3 ml of solution/g of tissue), salts
(chlorides and sulfate), bases of alkaline (K* and
Na') and alkaline earth metals (Ca2*). The materi-
als obtained were equilibrated with a solution con-
taining Na>SO4, NaCl, KCI and CaSO4 (6 ml of
solution/g of tissue) for 12 h and the salt excess was
removed as described earlier [12]. The materials
was suspended in deionized water, had its pH
adjusted at 3.5 with pure acetic acid and the mix-
ture was homogenized in a blender. The soluble
collagen gels concentration was 8 mg-g-1.

2.3. Preparation of collagen-YIG films
(Col-YIG)

YIG ferrite mass (320, 480 and 640 mg) was dis-
persed in 40 g of the anionic soluble collagen (1:1,
1:1.5 and 1:2 Col:YIG proportions, respectively)
by sonication for 3 min (1s on, 2s off) 70% in iced
water bath, using a Branson (Danbury, CT, USA)
Sonifier Model W-450D. The homogeneous emul-
sions were casted in acrylic mould and dried in
laminar flow air. The samples were designed colla-
gen, Col 1:1, Col 1:1.5 and Col 1:2.

2.4. Film thickness

The film thickness was measured using a Microme-
ter (Model 549E, Testing Machines Inc, Mineola,
LI, NY). The thickness measurements were taken
at 10 different points along the gauge length of each
specimen and the main values were taken.

2.5. X-ray diffraction

The X-ray film diffraction (XRD) patterns were
obtained at room temperature (300 K) in a Rigaku
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(Tokyo, Japan) X-ray powder diffractometer oper-
ating at 40 kV/25 mA, using CuKy, radiation. The
diffraction patterns were carried out using Bragg-
Brentano geometry in continuous mode with speed
of 0.5°/min and step size of 0.02° (20) in the angu-
lar range 20-60° (20).

2.6. FT-infrared spectroscopy

Fourier Transform Infrared (FTIIR) spectra were
recorded using ATR regime using a SHIMATZU
FTIR-283B spectrophotometer in the wave number
region of 400—4000 cm-!.

2.7. Differential scanning calorimetry

Differential scanning calorimetry was carried out
using NETZSCH (Selb, Germany) DSC 204 F1
Phoenix® equipment. Accurately weighed (5-8 mg)
dry material was placed in an aluminium cup and
hermetically sealed. An empty cup was used as ref-
erence. Samples were analyzed under continuous
flow of dry nitrogen gas at a heating rate of
20°C-min-! from 25 to about 200°C.

2.8. Thermogravimetric analysis

Thermogravimetric analysis (TG) of collagens and
mineralized films was conducted by heating the
sample up to 1000°C at the rate of 10°C-min-!,
using TGA Q5000 V2.1, TA Instruments (New
Castle, DE, USA). The films were sealed in an alu-
minum pan and heated at the rate of 5°C-min-! in a
N> atmosphere.

2.9. Scanning electron microscopy

Micrographs of collagen and collagen-YIG films
were obtained by scanning electron microscope
(SEM) (Vega XMU/Tescan, Bruker (Billerica,
MA, USA)), operating with bunches of primary
electrons ranging from 12 to 20 keV of rectangular
samples, in samples covered with a 60 nm thick
gold layer.

2.10. Dielectric and magnetic measurements

Dielectric measurements: real (€7) parts of relative
permittivity and loss tangent (tand = €’7//€}) were
performed using an Agilent (Santa Clara, CA,

USA) 4294 A precision impedance analyzer. It cov-
ered the region of 40 Hz—10 MHz at room tempera-
ture (300 K). This experimental part was performed
in capacitors shape samples. The electrode material
(Ag) was produced by the screen printing technique
(Joint Metal-PC200).

The magnetization measurements were performed
at room temperature with a home-made vibrating
sample magnetometer (VSM). The VSM had been
previously calibrated using a pure Ni wire, and
after measuring the mass of each sample the mag-
netization was given in emu/g.

3. Results and discussion

All the composites (Col 1:1, Col 1:1.5 and Col 1:2)
presented both crystalline and amorphous phases.
For instance, Figure 1 shows the XRD obtained
from composite Col 1:2. The crystalline phase is
formed due to YIG (ICDD/PDF-70-0953) particles
(ferromagnetic material) dispersed in the sample. It
was also possible to identify a small fraction of an
antiferromagnetic phase (YFeOs;-YFO-ICDD/PDF-
86-0171). Ristié et al. [13] found the same result
when they carried out the YIG synthesis by co-pre-
cipitation and calcination. This phase was also
observed when the sol-gel method was used instead
[14, 15]. In our previous work [16], we presented
the YIG synthesis and made a complete structural
characterization. Besides these magnetic phases,
there was an amorphous phase characterized as col-
lagen, where its major intensity was approximately
in 6 = 20°. This phase was identified as a broad
region in the diffractogram and it was found in all
the range.

e YIG
+ YFO

Intensivity [a.u.]

20 ' 30 I 4|0 I 50 60
20[°]

Figure 1. X-ray diffraction pattern of Col 1:2 biocompos-

ite film
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Figure 2. Infrared spectra of collagen and Col-YIG bio-
composite films showing the finger print region

The IR spectra of the collagen and the Col-YIG
composites films are shown in Figure 2. It can be
observed that there are two distinct frequency
regions where the bands happen for each phase of
the composite. The main bands from collagen are
located at 1651, 1543, 1338 and 1236 cm~!, where
the major feature of the IR spectrum of collagen
film is the Amidel band between 1640 and
1660 cm-! [17, 18], which arises from the stretch-
ing vibration of C=0 groups of amide groups in
protein. The intense absorption observed at
1543 cm! is due to the Amide II mode, which
arises from N-H stretching vibration strongly cou-
pled to the C—N stretching vibration of collagen
amide groups. Signals in the spectral region of
1200-1400 cm~! absorption are generally attributed
to the Amide III, arising due to the C—N stretching
and N-H in plane bending from amide linkages.
The C-N stretching vibration of the cyclic proline
may also contribute for the absorption at 1454 cm!.
The absorption seen at 1338 cm™! is attributed to
CH» wagging vibration of the proline side chain.

The Col-YIG films presented the same bands
observed for the collagen, as shown in Figure 2.
However, one can observe three new bands in 654,
584 and 553 cm!. They belong to the ferrite
(Y3Fes012) used to perform the magnetic compos-
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Figure 3. DSC curves of the Col-YIG biocomposite films

ite film. These modes are associated with the asym-
metric stretching (v3) of the tetrahedron (Fe-O
bond) [16].

The DSC scans in Figure 3 show that collagen
matrix of all samples are characterized by an
endotherm peak. It is due to the denaturation
process of collagen molecules and it is hydration
dependant. For collagen film, the denaturation tem-
perature is 79.7°C. For Col-YIG composites,
Col 1:1.5 and Col 1:2, a decrease on this tempera-
ture was observed (62.3 and 66.7°C, respectively).
These results show that YIG addition decreases the
thermal stability of the collagen molecules. These
results may be related to the shrinkage of the colla-
gen matrix that is observed macroscopically.

As shown in Figure 4, the TG curves of collagen
film were divided into three regions: Evaporation
of absorbed water occurred from room temperature
to 200°C, the thermal decomposition of collagen
happened from 250 to 380°C, in which the weight

100
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g 60
w
w
o
=
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@
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Temperature [°C]
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Figure 4. Thermogravimetric analysis of the Col-YIG bio-
composite films
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loss curve plateau appeared at over 550°C. The
residue at 800°C was attributed to the weight of
YIG in the sample. From Figure 4, one can see that
the degradation temperatures vary from 351°C for
collagen to 341°C for Col 1:1, 347°C for Col 1:1.5
and 346°C for Col 1:2, which suggests a decrease
on thermal stabilization of collagen molecules. The
amount of YIG in composite varies from 42.5% in
Col 1:1 film to 56.5% in Col 1:1.5 and to 64,6 % in
Col 1:2 composite. These results suggest that con-
tent higher of YIG in the composite tends to satura-
tion.

Figures 5a, 5b and 5c¢ show the SEM micrographs
recorded on biocomposite films. The YIG particles
were identified as almost uniform grains and exhib-
ited a quasi-globular morphology. The presence of
agglomerated grains was also observed in all sam-
ples. The microstructure of Col 1:1, Col 1:1.5 and
Col 1:2 films were shown as particles dispersed in
the polymeric matrix. Col 1:1 (Figure 5a), the sam-
ple with minor YIG quantity showed more dis-
persed grains than in the other films. It was also
possible to observe composite phases (polymer and
ferrite particles), i. e., YIG particles involved by
collagen protein (or on its surface) to obtain the
magnetic biocomposite film. As one can see, there
were morphology changes due to the increase of
YIG concentration in the film. The other samples
(Col 1:1.5 and Col 1:2, Figures 5b and 5c, respec-
tively) presented the same behavior, where the
increase of the YIG concentration caused a rise of
agglomerated regions.

In Figure 6, dielectric measurements (€} and tand)
of the collagen and biocomposites films are shown.
One can notice that the collagen presents a higher
relative permittivity than other films until approxi-

SEM HV. 30,00 kY WO 135820 mm
BEMMAG. 483 ke Det SE
Daledmighy 0820N0 RafaelFreire

'-’EG\NHESCN:
1 0 ]'lm Univedgidade Federal do C?B'Sn
a) b)

SEM MV 30.00 kv WO, 13 5180 mm
SEM MAG 4 554 Det BE
Date(mégl) 0B20M0 Rataelfraire

10 um Universidade Federsl 0o Cears n

mately 1 MHz (10.26), and that this value drops to
9.13 at 10 MHz (Table 1). Lima and co-workers
[17] found a value of 2.60 for this same film at

tand

O'D T T T T T
140 4 —— Collagen
—s— Col 11
i —— Col 1:1.5
120 —— Col12
100 A
80\
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Figure 6. Dielectric measurements of the Col-YIG bio-
composite films

Table 1. Thickness (e), relative permittivity (¢';) and loss
tangent (tand) of the biofilms

Sambl 1kHz 10 MHz
amples | ¢ [um] &r tand & tand
Collagen 92.0 33.46 0.89 9.13 0.10
Col 1:1 83.0 12.22 0.34 7.65 0.05
Col 1:1.5 | 173.0 15.15 0.26 10.55 0.09
Col 1:2 143.0 33.26 0.38 19.89 0.06

SEM MY, 30.00 kv WO 134870 mm
SEM MAG. 4.50 b

et
Dateimigl 09010 RataeiF raire

c)

10 MM yopersinae Fecerat uocaa-a“

Figure 5. Scanning electron micrograph recorded from Col 1:1 (a), Col 1:1.5 (b) and Col 1:2 (c) films
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1 MHz. This difference might have happened due
to the synthetic route used to obtain the collagen,
which resulted in a film with different dielectric
properties. The collagen film also presented higher
tand values when compared to biocomposites. This
happens due to the large number of interfaces
between the fibers and air pores that constitute the
collagen network. It can also be observed that there
was a shoulder at 370 Hz, which could be an evi-
dence of the dielectric relaxation. It can be associ-
ated with the dipolar relaxation process, most prob-
ably due to the changes located at interfaces [19].
This behavior was also observed by Marzec and
Pietrucha [20], when they studied the effect of dif-
ferent methods of collagen cross-linking on its
dielectric properties as a function of the tempera-
ture.

As the biocomposites had YIG in variable propor-
tions, it was expected a change in the dielectric
behavior of the samples. Their profile was very
similar to that of collagen, where the increase of the
frequency decreased the € and tand to the lowest
values, when it was compared at 1 kHz and 10 MHz
frequencies (Table 1). According to previous stud-
ies [11], YIG presented €7 and tand values of 7.72
and 0.06 at 1 MHz, respectively. Therefore, due to
the fact that the composite material had YIG and
collagen, there was a modification of these dielec-
tric features, as a result of a mutual influence (not
necessarily linear). For Col 1:2, the YIG added
caused a decrease of tand (0.06) and an increase of
€7 (19.89) at 10 MHz.

A study of the direct current (DC) magnetic fea-
tures of the Col-YIG system was performed (Fig-
ure 7), where it was observed the variation in
magnetization (M) versus the bias field (H) of the
samples. The shape of hysteresis loops obtained
from this experiment was attributed to soft ferrites
due to their values of coercive field (H¢), remanent

[
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H [Oe]
Figure 7. Hysteresis loop at room temperature for YIG
and Col-YIG biocomposite films

(M) and saturation (Ms) magnetization, as shown
in Table 2. One can notice a decrease of the Mg as a
function of the collagen concentration due to the
decrease of the ferrite material (YIG) in the film.
For instance, the Col 1:2 film presented approxi-
mately half Ms (17.12 emu/g) of the pure YIG
(34.54 emu/g). However, all films presented mag-
netic features. The H¢ values showed that the
increase of the collagen also makes the film harder
than the ferrite alone (—11.13 Oe), where this value
decreases to —40.21 Oe for the sample with minor
YIG concentration (Col 1:1), see Table 2. The YIG
presence in the collagen it changed into a new bio-
composite with interesting magnetic behavior.
Additionally, it was observed in some experiments

Table 2. Properties obtained from hysteresis loop for
Col-YIG system

Samples He M Ms
[Oe] [emu/g] [emu/g]
YIG (26.53 mg) -11.13 1.90 34.54
Col 1:2 (10.90 mg) -20.54 1.31 17.12
Col 1:1.5 (12.27 mg) 2824 132 12.91
Col 1:1 (6.84 mg) -40.21 1.46 11.88

Figure 8. The Col 1:1 film (a) and the experiment carried out with a neodymium-iron-boron magnet; before (b) and after

(c) magnetically attracted
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that they were all magnetically attracted by a per-
manent magnet, as shown in Figures 8a—c. In this
figure, one can see the Col 1:1 film (Figure 8a)
before (Figure 8b) and after (Figure 8c) magneti-
cally attracted by a neodymium-iron-boron
(Nd2Fe12B) magnet. This film had the minor con-
centration of the ferrite material of the system Col-
YIG and the phenomena occurred macroscopically.
Thus, this kind of biocomposite could be used as a
versatile magnetic-dielectric device at radio-fre-
quency.

4. Conclusions

The results of our studies demonstrated that ferri-
magnetic garnet (Y3FesOp2) and collagen fiber can
be used to obtain a homogeneous composite. This
new material presents magnetic properties due to
magnetic phase concentration in the film, and this
magnetic behavior was observed by the hysteresis
loops measurement. All the composite films
showed a ferrimagnetic behavior and they were
characterized as a soft magnet material. These
results show that Col-YIG biocomposites are bio-
logical films with magnetic properties and they can
be employed as a versatile performance material,
due to their flexible and magnetic features. They
can be used, for instance as an electronic device
and for biological applications.
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