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Abstract. New thermo-reversible networks were obtained from poly(vinyl furfural) and multifunctional maleimide
monomers by Diels-Alder (DA) and retro-DA reactions. The poly(vinyl furfural) having acetalization degree of 15 and 25%
were obtained by the acid-catalyzed homogenous acetalization of poly(vinyl alcohol) with 2-furfural in a nonaqueous
media. The thermal and viscoelastic behaviour of the cross-linked materials have been studied via differential scanning
calorimetry, dynamic mechanical analysis and thermogravimetric analysis. The networks exhibit considerable swelling in
those organic solvents that dissolve both poly(vinyl furfural) and bismaleimides; by heating in aprotic dipolar solvents at

150°C, they become soluble.
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1. Introduction

Inspired by the phenomenon of self-healing in bio-
logical systems, the synthesis of man-made self-
healing polymeric materials has become a newly
emerging paradigm and a fascinating area of research.
The Diels-Alder reaction and its retro-Diels-Alder
analogue represent a highly promising route to
introducing self-healing properties to polymeric
systems [1-5]. The search for various reversible
reactions is a paramount importance for unlocking
the potential of the conceptual framework of cova-
lent constitutional dynamic chemistry [6]. The
reversibility of DA reaction is widely applied to the
preparation of remarkable polymers. Thermally-
reversible DA reactions have been used in numer-
ous studies including polymer synthesis from multi-
functional monomers [4, 7-15] or by cross-linking of
functional copolymers containing maleimide or furan
pendant groups [16-22], surface modifications [16,
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23], organic-inorganic polymer hybrids [24, 25],
reversible crosslinking polymer chains/ gels [5, 16,
24, 26] and remendable/self-healing polymers [11,
12, 27]. Due to the fact that these reactions can pro-
ceed under mild conditions without a catalyst, this
makes them attractive for designing covalently
reversible bonds in which furan and maleimide
functional groups are responsible for association
and dissociation [28-31].

In this study, we report the preparation and charac-
terization of thermo-reversible networks based on
poly(vinyl furfural) and multifunctional maleimide
compounds, as the basis for obtaining asymmetric
membranes by the phase inversion method. Thermo-
reversible nature of the Diels-Alder networks was
characterized by FTIR, 'H-NMR and by a heating-
cooling cycle in differential scanning calorimetry
(DSC) using a model compound based on poly(vinyl
furfural) and mono-maleimide compound. The ther-
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mal and mechanical properties of the polymers
were characterized by thermogravimetric analysis
and dynamic mechanical analysis.

2. Experimental

2.1. Reagents and materials

Poly(vinyl alcohol) (PVA), white crystalline form
(Aldrich reagent, viscosity-average molecular weight
77000-79000 containing 2% of acetate group),
2-furaldehyde, 99% (Aldrich, USA), dimethylfor-
mamide (DMF), dimethylsulfoxide (DMSO), poly-
caprolactone diol having numeric-average molecular
weight of 1250 (Aldrich, USA), p-toluene sulfone
acid (p-TSA) were used as received. 4-Maleimi-
dobenzoyl chloride was synthesized as described in
the literature [32].
4,4'-bismaleimidodiphenylmethane (BMI-1), 4,4'-
bismaleimidodiphenyloxide (BMI-2) and 1,1'-hexa-
methylene bismaleimide (BMI-3) were synthesized
from diamines (1 mol) and maleic anhydride
(2 moles) in dry acetone according to a two-step
method described in the literature [33].

2.1.1. Synthesis of bismaleimide (BMI-4) and
maleimide (MI)
The bismaleimide containing urethane groups
(BMI-4) was prepared by the addition reaction of
4-maleimidophenyl isocyanate with polycaprolac-
tone diol having numeric-average molecular weight
of 1250 (Aldrich, USA) according to a method
described in our previous paper [34].
BMI-4, yellow wax from dichloromethane, yield
82%.
FTIR (KBr): 3323, 3085, 2947, 2865, 1735, 1707,
1608, 1534, 1462, 1398, 1314, 1240, 1160, 1105,
1070, 834, 689 cm™.
'"H-NMR (CDCls): 6 = 7.55 (d, 4H, aromatic pro-
tons), 7.08 (d, 4H, aromatic protons), 6.80 (s, 4H,
maleimide protons), 5.35 (s, 2H, NH proton), 4.05
(t, 20H, COOCH,), 3.75 (t, 4H, NHCOOCH,), 2.35
(t, 20H, CH,COO), 1.45 (m, 160H, CH,—CH,-).
4-nonylphenyl 4-(2,5-dioxo-2,5-dihydro-1H-pyrrol-
1-yl)benzoate (MI) was prepared by the reaction of
4-maleimidobenzoyl chloride with p-nonylphenol,
in chloroform, in the presence of triethylamine. A
typical procedure is presented below. To a solution
of 4-maleimidobenzoyl chloride (0.01 mol, 2.35 g)
in chloroform (40 ml) cooled at 0-5°C, triethy-
lamine (1.4 ml) and p-nonylphenol (0.01 mol, 2.2 g)

were added. The reaction mixture was stirred at 0—
5°C for 2 hours, at room temperature for 2 hours
and at reflux for 1 hour and then was filtered. The
organic layer was washed with water. After remov-
ing of chloroform, 4 g of yellow wax product was
obtained (yield 90%).

'H-NMR (CDCls): 6 = 8.24 (d, 2H, aromatic pro-
tons), 7.63 (d, 2H, aromatic protons), 7.38 (dd, 2H,
aromatic protons), 7.23 (d, 2H, aromatic protons),
6.88 (s, 2H, maleimide protons), 1.70 (m, 2H, CH»),
1.38 (m, 14H, (CH;);) and 0.80 (t, 3H, CH3).

2.1.2. Synthesis of poly(vinyl furfural) (PVF)
PVF was prepared by acetalization of PVA in
DMSO as solvent, in the presence of p-TSA accord-
ing to a method described in literature [35-36]. The
degree of acetalization was determined by 'H-NMR
spectra using Equation (1) [37]:

2
Ach,
Ang

where (FA4) is the mol% of vinyl acetal, Acy, repre-
sents the total peak area of methylene protons and
Ay, represents peak area of the Hs protons which
appears at 7.6 ppm.

A typical procedure is presented below. PVA (11 g,
0.25 mol, based on -CH,—CH—OH as unit) was dis-
solved in DMSO (200 ml) in a round bottom flask.
Then, p-TSA (2 g, 1% w/v of the reaction medium)
and 2-furaldehyde (10 ml, 0.12 mol) was added.
The reaction mixture was heated and stirred at 60°C
for 24 hours, then cooled at room temperature and
poured in water. The solid was filtered, then washed
well with water and finally dried in a vacuum oven
at 60—65°C for 24 hours, yield 82%.

(FA) = (1)

-2

2.1.3. Synthesis of model compound (PVF-MI)
To a solution of PVF-2 (0.5 g) in DMF (20 ml), MI
(1.5 g) was added and stirred at 80°C for 8 hours.
The solution was cooled and precipitated in water,
then dried. The product was purified by dissolving
in acetone and precipitation in water.

2.1.4. Preparation of cross-linked polymers
via DA reaction of PVF with
bismaleimide (BMI)

A mixture of PVF and BMI (2DS:1 by mols) was

dissolved in DMF (10 ml) and stirred at 80-90°C
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for 4 hours. The reaction solution was degassed in
vacuum and quickly transferred to a glass plate,
using a doctor blade (e = 1 mm). The solvent was
evaporated in atmosphere at 80-90°C for 24 hours.
The film was removed from the glass plate by soak-
ing in cold water.

2.2. Measurements

The Fourier transform infrared (FTIR) spectra were
recorded on a Bruker Vertex 70 Instruments (Aus-
tria) equipped with a Golden Gate single reflection
ATR accessory, spectrum range 6004000 cm™'.
The proton nuclear magnetic resonance ('H-NMR)
spectra were recorded on a Bruker NMR spectrom-
eter, Avance DRX 400 MHz (Rheinstteten, Ger-
many), using DMSO-dg and CDCl; as solvents and
tetramethylsilane as an internal standard.
Thermogravimetric analyse (TGA) was carried out
in air atmosphere using a DERIVATOGRAF Q-
1500 D apparatus (Hungary). The rate of TGA scans
was 10°C/min. The initial weight of the samples
was about 50 mg and the temperature range 30—
700°C.

Differential scanning calorimetry (DSC) measure-
ments were conducted on a DSC 200 F3 Maia (Net-
zsch, Germany). About 9 mg of sample were heated
in pressed and punched aluminium crucibles at a
heating rate of 10°C/minute. Nitrogen was used as
inert atmosphere at a flow rate of 100 ml/minute. A
Perkin Elmer DSC-7 differential scanning calorime-
ter (Massachusetts, USA) was used for thermal analy-
sis and was operated at a heating rate of 10°C/min.

Tests were conducted on samples of about 10 mg,
which were gradually heated for observation of the
glass-transition temperature.

Dynamic mechanical experiments (DMA) were
made using a Diamond PerkinElmer instrument (Sin-
gapore) that applies a sinusoidal stress to the sample
and measures the resulting strain. The force ampli-
tude used was well within the linear viscoelastic
range for all investigated samples. The thermo-
mechanical properties were evaluated, starting
from —100°C up to beyond the temperature corre-
sponding to glass transition, at a heating rate of
2°C/min and a frequency of 1 Hz, under nitrogen
atmosphere. The size of films was of 10 mm x
10 mm x 0.5 mm for the tension attachment.
Wide-angle X-ray diffractions (WAXD) of the poly-
mers were recorded in a Bruker AD8 Advance dif-
fractometer (Germany) using a Cu-K, source, at
room temperature.

3. Results and discussion

3.1. Characterization of PVF-(1,2)

By acetalization of PVA with furfural in DMSO in
the presence of p-TSA was obtained PVF with the
acetalization degree of 15% (PVF-1) and 25%
(PVF-2). A typical 'H-NMR spectrum for PVF-2 is
shown in Figure 1. The signals observed at 1.30-1.90,
3.83—-3.99, 5.57, 6.43 and 7.61 ppm are attributed
to the methylene (—CH,—), methine (—CH<),
dioxymethine (—-O—CH—O-) and furan ring protons,
respectively.
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Figure 1. The 'H-NMR spectrum for PVF-2

131



Gaina et al. — eXPRESS Polymer Letters Vol.6, No.2 (2012) 129-141

exg —=

Heat flow [Wg]

191.4°C

Temperature [*C]

Figure 2. The DSC curves of PVA, PVF and PVFN films
at second heating run films

The DSC measurements of PVA and PVF films are
presented in Figure 2. The DSC scan of PVA shows
a transition corresponding to the glass transition
temperature at 61°C and an endothermic peak
around 191°C attributed to the melting temperature
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Figure 3. The storage modulus and dissipation factor tand
profiles of PVA, PVF-1 and PVF-2 with fre-
quency of 1 Hz

of PVA. The DSC scans of PVF-1 and PVF-2 show
a transition temperature around 81 and 87°C, respec-
tively. Glass transition temperature of PVF increases
with the increase of acetalization degree [38].

The variations of the dynamic mechanical proper-
ties with temperature for PVA, PVF-1 and PVF-2
are presented in Figure 3. The viscoelastic results
obtained for these three samples are summarized in
Table 1. All three samples are characterized at low
temperatures by a glassy behaviour. This was indi-
cated by the relatively constant value of the storage

Table 1. Dynamic mechanical analysis of PVF-(1-2) and PVFN-(1-8)

DMA Storage modulus at
Sample T tan o peak 20°C 170°C 250°C
[°C] Temperature [°C] Height [MPa] [MPa] [MPa]

PVF-1 71.9 86.9; 163.8 0.93; 13.26 3063 0.039 6
PVFN-1 109.3 136; 180; 232 0.56; 0.25; 0.137 1910 3.250 532
PVFN-3 97.4 123.5; 178.6; 236 0.56; 0.26; 0.151 2019 3.311 1034
PVFN-5 68.2 87.4;123; 168 0.65; 1.56; 3.50 596 0.096 1.72
PVFN-7 72.7 89.6; 168 0.51;5.28 290 0.047 -
PVF-2 66.3 100.7; 178.8 0.77; 10.06 1728 0.027 0.263
PVFN-2 118.5 140.6; 156 0.408; 0.471 1781 4.455 108
PVFN-4 113.0 133; 179; 241 0.50; 0.20; 0.12 1412 4.099 161
PVFN-6 96.2 89.6; 124; 195 0.51;0.78; 0.119 809 4.600 36.10
PVFN-8 40.0 74.2; 180 0.38; 4.65 101 0.017 4.40

Glass transition temperature by DMA measurements, corresponded to onset temperature of the decrease in £’

Table 2. Dynamic mechanical data of PVA, PVF-1 and PVF-2

Sample E’10%* (=-6°C) T, of amorphous phase [°C] tand of crystalline p'hase
[Pa] E’onset” E" nax’ tand peak T [°C] Height
PVA 3.7 34.9 424 54.4 ?}1“3’311‘156; 0.15
167.0 13.53
PVF-1 3.0 39.8; 71.9 46.3; 74.4 Sh;’;‘.l;jer zza;‘
PVF-2 2.0 41.7 (broggf)eak) 58.7;85.8 100.7 174.5 9.72

Storage modulus corresponding to glass region;

bGlass transition temperature of sample by DMA measurement, corresponded to onset temperature of the decrease in £;
Glass transition temperature of sample by DMA measurement, corresponded to maxim peak of £
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modulus whose magnitude is over 10° Pa (Table 2).
In this region, the macromolecules are in frozen
state, the polymers being stiff and glassy. As is
depicted in the £-T curve the rigidity of the three
polymers in the glassy region decreases in the
order: PVA>PVF-1>PVF-2. Consequently, the stor-
age modulus diminishes as furfural content increases
suggesting an increasing in mobility of macromole-
cular chains. The explanation is relative simple: by
introduction of furfural units, the cleavage of the
intra- and intermolecular hydrogen bonds between
hydroxyl groups takes place, the rigidity induced by
these bonds decreases, the free volume increases
and the sample presents a more flexible structure.
The storage modulus of the PVA decreases with
increasing temperature and drops at 13°C. The drop
of £’ and two peaks of £ and tand centred at 42.4
and 54.4°C, respectively can be attributed to the
glass transition of the amorphous phase [39-41].
Moreover, the small decrease of £’ modulus from
3-10% to 6:107 Pa, less than two orders of magnitude
indicates the presence of restraints which impede
the coordinated motion of macromolecular chains.
These restraints could originate from the higher
crystallinity of PVA which appeared as a result of
planar zig-zag conformation. For PVF-1 the two
drops that appear on the £’ curve at 39.8 and 71.9°C,
the peaks on E” (46.3 and 74.4°C) and tand curve
(51.7 and 86.9°C) indicate the presence of two
relaxation phenomena (Table 2). A rapid drop of
storage modulus of PVF-2 from 1.6:10° to 1.7-10° Pa
relates to the glass transition. The fall of the storage
modulus is accompanied by a large peak on the £”
curve with a maximum at 66.3°C. Analyzing the
plot tand versus temperature in the range of 50—
120°C a characteristic peak, centred at 100.7°C,
was observed accompanied by two shoulders: one
centred at 58.7°C and the other at 85.8°C.

The variation of tan J as a function of temperature at
a frequency of 1 Hz is represented in Figure 3.
DMA spectra shows a shift of the a peak to higher
temperatures with increasing furfural content and a
reduction of relaxation strength from 0.93 in the
case of PVF-1 to 0.77 in the case of PVF-2. Taking
into account that the height of tand peak is gov-
erned by the molecular mobility there can be con-
cluded that with increasing furfural content a diminu-
tion in mobility appears.
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Figure 4. XRD patterns of the PVA, PVF-2 and PVFN-2

At a temperature higher than 100°C, literature stud-
ies mention two relaxations of the crystalline phase
at 135 and 237°C, respectively. The first one is attrib-
uted to the local relaxation of the crystalline phase,
while the second one is caused by the melting of the
crystalline domains [39—41]. In our case the first
peak of PVA is shifted to higher temperatures
(147.6°C), while the melting of the crystalline
domains could not be observed. In PVF-1 and
PVF-2 there is an increase in the tand temperature
at which this relaxation appears, as well as a decrease
in strength with increasing furfural content. A pos-
sible explanation consist of the restrictive molecu-
lar motions appeared as a result of the crosslinking
reactions confirmed by the abrupt increase of the
storage modulus at temperatures higher than 190°C.
Since the furfural rings do not fit into the crystal lat-
tice of PVA, the degree of crystallinity decreases.
The (unreacted) hydroxyl functions, which are dis-
tributed randomly as well, can only lead to a very
limited degree of crystallinity in PVF. This expla-
nation is confirmed by wide-angle X-ray diffraction
(WAXD) measurements (see Figure 4). The peak
with 8 =19.8° corresponds to the (110) reflection, i.e.,
a plane containing the planar zigzag chain direction
of the crystallites.

3.2. Characterization of PVFN networks

DA cycloaddition reaction was used in cross-link-
ing poly(vinyl furfural) with multifunctional
maleimide (Figure 5). The DA reaction was carried
out between PVF-1 or PVF-2 and bismaleimide
monomers (BMI). The furan rings in the PVF-1 or
PVF-2, part of the polymer, and the maleimide
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Figure 5. Synthesis of networks PVFN-(1-8)

group in the BMI acted as the diene and dienophile,
respectively. Stoichiometric quantities of PVF-1
and BMI (2:1 mols) were dissolved in DMF and
stirred at 80-90°C for 4 hours. The reaction mixture
was degassed and transferred to a glass plate and
the solvent was evaporated at 80-90°C for 24 hours.
The film was removed from the glass plate by soak-
ing in cold water. Figure 6 represents the ATR-FTIR
spectra of the PVF-1 and their network materials.
The spectrum of PVF-1 shows characteristic peaks
at 1506 cm™' (C=C in furan ring), 1103 cm™ (C-O
in furan ring), 1004 cm™' (furan ring breathing) and
750 cm™' (monosubstituted furan ring) [12]. The
ATR-FTIR spectrum of networks shows a new
absorption band about 1776 cm™" attributed to the
existence of DA adduct from the reaction between
furan and maleimide groups [12, 42] and at
1190 em™! assigned to ve_n_c from cycoadduct. The

strong absorption of the >C=0 stretching shifted
from 1730 cm™' (in PVF-1) to 1705 cm™" (in net-
work) due to the interaction between PVF and bis-
maleimide.

The PVFN-(1-8) network materials are not soluble
in those organic solvents that dissolve both PVF
and BMI, but they swell in them. By heating of
PVFN-(1-8) in aprotic dipolar solvents (DMF, NMP
or DMSO) at 150°C for 30—-60 minutes, they become
soluble. For example, a fluid solution of PVFN-8 in
DMF (5 wt%) formed by retro-DA reaction of net-
work in DMF at 150°C for 1 hour (Figure 7a)
becomes gel by maintaining it at 80°C for 3 hours
(Figure 7b).

3.2.1. Thermal properties

The thermo-reversible properties of network mate-
rials are characterized by DSC analysis. Typical
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Figure 6. The ATR-FTIR spectra of the PVF-1 and their network materials
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Figure 7. Photograph of observation of the thermally
reversible cross-linking behaviour of PVFN-8

dynamic DSC curves of PVF and BMI systems are
presented in Figure 2. As can be seen, in the case of
polymers based on BMI-(1,2) with a higher rigid-
ity, T, shifts to higher values and the retro-DA
process overlaps with the glass transition. The poly-
mers based on BMI-(3,4) present lower 7, and the
retro-DA process takes place after the glass transi-
tion.

To facilitate the investigation by 'H-NMR spec-
troscopy of the DA and retro-DA reactions of poly
(vinyl furfural) with maleimide, a model compound
was synthesized by the reaction of PVF-2 and
mono-maleimide compound (MI) (Figure 5). The
"H-NMR spectrum of model compound shows in
addition to the chemical shifts characteristic to the
PVF structure, and signals attributed to maleimide
organic rest at 0.80-1.70, 6.88, 7.38, 7.63 and
8.24 ppm due to CH;3 and CH,; protons from nonyl
rest and aromatic protons and at 6.60, 5.37, 5.28
and 3.10-3.30 ppm corresponding to the protons of

maleimide-furan cycloadduct (Figure 8a). By heating
the solution at 150°C for 30 minutes, the 'H-NMR
spectrum shows the disappearance of chemical shifts
characteristic to the cycloadduct protons and the
appearance of new signals at 7.20, 7.55 and 6.41 ppm
attributed to the maleimide and furan protons indi-
cating that the retro-DA reaction occurred entirely
(Figure 8b). By cooling the sample at room temper-
ature there can be observed the partial recovery of
cycloadduct (Figure 8c). Maintaining the sample at
80°C for 3 hours leads to total recovery of
cycloadduct.

Retro-DA and DA reactions were also studied by
DSC measurements, applying heating-cooling cycles
for PVF-MI (Figure 9a). The hl curve shows the
first heating cycle of the cross-linked PVF-MI
heated at 50-180°C with a heating rate of 10°C/min.
It has an inflexion around 98°C attributed to the
glass transition temperature of sample and a large
endothermic peak at 143°C which indicated the
cleavage of the DA cycloadduct. In the second (h2)
and the third (h3) heating run the compound has the
same behaviour as in the first one, this fact being a
proof of it’s thermo-reversible nature. The increase
of the glass transition temperature from 98°C for
the first heating run to 99°C for the third heating
cycle is probably due to the dehydration reactions
of PVF polymer.
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Figure 8. The 'H-NMR spectrum for model compound: a) adduct of PVF-2 and MI; b) retro-DA product obtaining by heat-
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Figure 9b shows the heating and cooling curves of
DSC analysis of the PVFN-8 polymer. The curve
‘A’ shows the first heating cycle of the cross-linked
polymer heated at 50 to 165°C. It has an endother-
mic peak at 138°C, which indicated the cleavage of
the DA cross-links. The curve ‘B’ shows the cool-
ing curve of the polymer. It shows a broad exother-
mic peak at 103—161°C (centering at about 130°C)
due to the covalent bond formation between furan
and maleimide moieties, as the samples come
closer on cooling and then finally reconnect very
efficiently. The curve ‘C’ shows the second heating
cycle of the DA cross-linked polymer. It also shows
the same observation in the first heating cycle. It
clearly indicates that the Diels-Alder crosslinked
polymer (PVFN-8) is thermoreversible. The 7, of
the PVFN-8 polymer at 97°C was determined from
the second heating cycle of the polymers and are
shown in Figure 9. The shifting of T, from 87°C
(PVF-2) to 97°C is due to the DA cross-linked
between PVF-2 and BMI-4.

The occurrence of the retro-DA reaction was also
observed with ATR-FTIR. Figure 10a—c shows the
ATR-FTIR spectra of PVFN-8 network film before
heating at 150°C (Figure 10a), after heating at 150°C
(Figure 10b) and after maintaining at 80°C for 3 h
(Figure 10c). The PVFN-8 film spectrum (Fig-
ure 10a) evidences the intense absorption bands at
1709 and 1730 cm™! attributed to C=0O stretching
from urethane, ester or imide groups, 1536 cm™!
(amide II), 1395 cm™! (C-N-C), 1220 cm™! (amide
IT) and 1159 cm™' (C—O—C). The peak at 1776 cm™!
is attributed to the maleimide-furan cycloadduct
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Figure 10. The ATR-FTIR spectra of PVFN-8: a) initial;
b) heated at 150°C; c) and after maintaining at
80°C for 3 h

[38]. The spectrum ATR-FTIR of PVFN-8 after
heating at 150°C (Figure 10b) presents a shift of
absorption band characteristic to C=0O stretching
from 1709 to 1711 cm™' and the disappearance of
the absorption bands at 1776 cm™" attributed to the
cycloadduct and at 1190 cm™' corresponding to
C-N-C (succinimide structure). The absorption band
of amide 1II shifted to 1520 cm™!. The ATR-FTIR
spectrum of network film after cooling at room
temperature (Figure 10c) is identical to the initial
spectrum.

In addition to the ATR-FTIR and DSC study, DMA
was also employed to examine thermal behavior of
the network materials. In Figures 11 and 12, the
storage modulus (£’) and dissipation factor (tand)
curves of networks based on PVF and BMI, are
plotted against temperature, and their data are pre-
sented in Table 1. As in DSC, DMA curves of the
networks based on BMI-(1,2) show a single drop
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Figure 11. Storage modulus curves of PVFN networks
based on PVF-1 (black line) and PVF-2 (grey
line) with frequency of 1 Hz (with a heating rate
of 2°C/min)
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Figure 12. Dissipation factor tand curves of PVFN net-
works with frequency of 1 Hz
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Table 3. The thermogravimetric data of PVA, PVF and PVFN

Sample Decomposition temperature range (weight loss) [°C] ([%])
Stage 1 Stage 11 Stage 111 Stage IV

PVA 20-232 (3) 260-385 (42) 385-470 (26.8) 470-630 (16.8)
PVF-1 20-240 (3) 240-300 (28.5) 300-370 (22) 370-500 (20); 510-670 (20)
PVFN-1 20-235 (3) 235-380 (25) 389-500 (28) 500-680 (42)
PVFN-3 20-235(2) 245-405 (32) 405-520 (22) 520-720 (36)
PVFN-5 20-240 (2) 245-395 (33) 410-505 (29) 510-700 (36)
PVFN-7 20-200 (2) 210406 (37) 400-530 (23) 530-700 (30)
PVF-2 20-235(2) 240-370 (43) 370-500 (21) 500-630 (29)
PVFN-2 20-265 (5) 270400 (20) 400-515 (26) 515-700 (40)
PVFN-4 20-270 (1.5) 270403 (20) 405-510 (25) 515-720 (38)
PVFN-6 20-245 (1.5) 250-400 (30) 405-510 (27) 515-710 (40)
PVFN-8 20-220 (1.5) 230-395 (36) 400-530 (21) 530-700 (31)

attributed to the glass transition which overlaps
with the retro-DA reaction and varied between 97.4
and 118.5°C (Table 1). The DMA curves of net-
works based on BMI-(3,4) show a decrease in two
stages, first step is due to the glass transition and the
second stage is assigned to the retro-DA reaction.
This behaviour is concordance with the DSC dia-
grams (Figure 2) where the networks based on
BMI-(1-2) presented a single inflexion while the
networks based on BMI-(3,4) showed two inflex-
ion points. The storage modulus of networks recov-
ers above 200°C due to the thermal crosslinking
reactions of the resulted bismaleimide from retro-
DA reactions and partial dehydration of PVA accom-
panied by polyene formation [43]. Figure 12 illus-
trated the temperature dependence of tanod for
PVFN-(1-8) networks. Indeed, the relaxation process
of networks appears structured into two compo-
nents that can be tentatively attributed to the glass
transition temperature of networks and retro-DA
reactions. The second transition become prevailing
for networks based on BMI-(3,4) due to length of
aliphatic chains of bismaleimide groups.

By processing TGA curves, thermal data presented
in Table 3 resulted. The synthesized networks
exhibited a four-step thermo-degradation curve.
The weight loss at 20-265°C (in the first stage of
decomposition) could be due to the residual sol-
vents in the polymers (DMF and water). The second
stage of decomposition ranged between 210—406°C
with a weight loss of 20— 36% corresponding to the
elimination of water molecules from PVF chains
[44] and acetic acid from acetate groups. In the third
stages of decomposition, the breakdown of the poly-
mer backbone takes place in the range of 389-—
530°C with a weight loss of 21— 29%. Specifically,

it can be assigned to the degradation of nonconju-
gated polyene. The main decomposition of this
process takes place in the range of 500—720°C cor-
responding to the weight loss of 31-42%.

3.2.2. Water absorption of networks

The water absorption property of the samples was
tested by their immersion in distilled water for
100 hours. Specimens were drawn, and the surface
water was removed using a tissue paper and weighted
to an accuracy of 0.001 g. The water absorption
versus time is plotted in Figure 13. As can be seen
from figure, the moisture absorption of PVF-2-
based networks (having acetalization degree of
25%) is considerably smaller than that of the series
based on PVF-1.
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Figure 13. The water absorption versus time of the PVA,
PVF and PVFN

4. Conclusions

Two series of polymers based on PVA modified
with 2-furaldehyde have been synthetized and char-
acterized using ATR-FTIR, 'H-NMR, DSC, DMA,
TGA analysis. The acetalization of PVA increases
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T, value that increases more by cross-linking with
BMI. The reversible nature of the cross-linked poly-
mer was confirmed by ATR-FTIR spectroscopy and
DSC analysis. In the DSC experiments the PVF-
BMI system shows a clear endotherm during heat-
ing, indicating the cleavage of the inter-monomer
linkages; they also show an exotherm during cool-
ing, indicating reconnection of the dienes and
dienophiles. This hypothesis was corroborated by
ATR-FTIR analysis during the heating/cooling
cycle and DMA measurements. The £’ curves for
networks based on BMI-(1,2) show a single drop
attributed to the glass transition which overlaps
with the retro-DA reaction, while DMA curves of
networks based on BMI-(3,4) exhibit a two-stage
decrease, first stage is attributed to the glass transi-
tion of polymers and the second stage is attributed
to the retro Diels-Alder reaction.

High acetalization degree of PVF played an impor-
tant role in reducing moisture absorption of the net-
works.
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