Processing and characterization of poly(lactic acid) based bioactive composites for biomedical scaffold application
J. Goswami, N. Bhatnagar, S. Mohanty, A. K. Ghosh
Vol. 7., No.9., Pages 767-777, 2013
DOI: 10.3144/expresspolymlett.2013.74
DOI: 10.3144/expresspolymlett.2013.74
GRAPHICAL ABSTRACT
ABSTRACT
The current study focuses on three-components material systems (poly(lactic acid) (PLA), poly(ε-caprolactone) (PCL) and wollastonite (W)) in view of possible application a biomedical scaffold constructs. Melt extruded PLA/PCL/W composites (PLCL15, PLCLW1, PLCLW4, PLCLW8 containing 0, 1, 4, 8 phr filler respectively) are batch foamed using compressed CO2 and the porous foams are studied for in vitro biocompatibility by seeding osteoblast cells. SEM images of the unfoamed polymers show immiscibility in all compositions. Materials have been tested under compressive load using dry and wet conditions (using phosphate buffered saline at pH 7.4) for in vitro study. Contact angle measurement shows enhanced hydrophilicity in the composites changing from 80° in PLCL15 to 72° in PLCLW8. The foams are found to be microcellular (5–8 µm) in morphology showing quite uniform pore distribution in the composites. The prepared foams, when studied as scaffold constructs, show osteoblast cell attachment and proliferation over the incubation period of 7 days. As expected, PLCLW8 containing highest amount of CaSiO3 supported maximum cell growth on its surface as visible from MTT assay data and SEM scans.