Content
All issues / Volume 8 (2014) / Issue 4 (April)
This is an editorial article. It has no abstract.
Novel thermoplastic vulcanizates (TPVs) based on silicone rubber (PDMS) and polyamide (PA12) have been prepared by dynamic vulcanization process. The effect of dynamic vulcanization and influence of various types of peroxides as cross-linking agents were studied in detail. All the TPVs were prepared at a ratio of 50/50 wt% of silicone rubber and polyamide. Three structurally different peroxides, namely dicumyl peroxide (DCP), 3,3,5,7,7-pentamethyl 1,2,4-trioxepane (PMTO) and cumyl hydroperoxide (CHP) were taken for investigation. Though DCP was the best option for curing the silicone rubber, at high temperature it suffers from scorch safety. An inhibitor 2,2,6,6-tetramethylpiperidinyloxyl (TEMPO) was added with DCP to stabilize the radicals in order to increase the scorch time. Though CHP (hydroperoxide) had higher half life time than DCP at higher temperature, it has no significant effect on cross-linking of silicone rubber. PMTO showed prolonged scorch safety and better cross-linking efficiency rather than the other two. TPVs of DCP and PMTO were made up to 11 minutes of mixing. Increased values of tensile strength and elongation at break of PMTO cross-linked TPV indicate the superiority of PMTO. Scanning electron micrographs correlate with mechanical properties of the TPVs. High storage modulus (E') and lower loss tangent value of the PMTO cross-linked TPV indicate the higher degree of cross-linking which is also well supported by the overall cross-link density value. Thus PMTO was found to be the superior peroxide for cross-linking of silicone rubber at high temperature.
To achieve excellent properties of polymer blends and composites, good dispersion and uniform distribution of second component or filler in the matrix are often required. However, more and more evidences reveal that uniform distribution is not always the best. To further prove this idea, in this work, we purposely designed and prepared different samples of isotactic polypropylene (iPP)/elastomer or iPP/β-nucleating agent with uniform and non-uniform distribution of the modifiers via stacking the blending sheets in different sequence. It was found that for a given amount of toughening agent, the impact strength of polymer blends with non-uniform distribution of elastomer or β-nucleating agent could be much higher than its uniformly dispersed counterpart, while the tensile strength and tensile modulus remain relatively constant. The instrumented impact test confirmed that among the samples with different layered structures, the absorbed energy during crack initiation differs little from each other. Whereas absorbed energy during crack propagation process shows the same trend as final impact strength, making it the controlling parameter during the impact process. When cracks are initiated at higher toughening agents content side, the relatively smooth fracture surfaces near the crack edge area proved that they absorb small energy and the adjacent inner part showed obviously plastic deformation, corresponding to higher energy absorption. Our work demonstrates again that design and control of the hierarchical structure of polymer articles is vital for high performance properties and non-uniform distribution of filler could be much better than the uniform distribution.
Advanced anticorrosive coatings prepared from electroactive polyimide/graphene nanocomposites with synergistic effects of redox catalytic capability and gas barrier properties
K. C. Chang, C. H. Hsu, H. I. Lu, W. F. Ji, C. H. Chang, W. Y. Li, T. L. Chuang, J. M. Yeh, W. R. Liu, M. H. Tsai
Vol. 8., No.4., Pages 243-255, 2014
DOI: 10.3144/expresspolymlett.2014.28
Vol. 8., No.4., Pages 243-255, 2014
DOI: 10.3144/expresspolymlett.2014.28
In this study, electroactive polyimide (EPI)/graphene nanocomposite (EPGN) coatings were prepared by thermal imidization and then characterized by Fourier transformation infrared (FTIR) and transmission electron microscope (TEM). The redox behavior of the as-prepared EPGN materials was identified by in situ monitoring for cyclic voltammetry (CV) studies. Demonstrating that EPGN coatings provided advanced corrosion protection of cold-rolled steel (CRS) electrodes as compared to that of neat EPI coating. The superior corrosion protection of EPGN coatings over EPI coatings on CRS electrodes could be explained by the following two reasons. First, the redox catalytic capabilities of amino-capped aniline trimer (ACAT) units existing in the EPGN may induce the formation of passive metal oxide layers on the CRS electrode, as indicated by scanning electron microscope (SEM) and electron spectroscopy for chemical analysis (ESCA) studies. Moreover, the well-dispersed carboxyl-graphene nanosheets embedded in the EPGN matrix hinder gas migration exponentially. This would explain enhanced oxygen barrier properties of EPGN, as indicated by gas permeability analysis (GPA) studies.
The aim of this work was to investigate how the surface morphology of polypropylene (PP) is influenced by the surface activation mediated by a flame obtained using a mixture of air and propane under fuel-lean (equivalence ratio φ = 0.98) conditions. Morphological changes observed on flamed samples with smooth (S), medium (M), and high (H) degree of surface roughness were attributed to the combined effect of a chemical mechanism (agglomeration and ordering of partially oxidized intermediate-molecular-weight material) with a physical mechanism (flattening of the original roughness by the flame’s high temperature). After two treatments, the different behavior of the samples in terms of wettability was totally reset, which made an impressive surface energy of ~43 mJ•m–2 possible, which is typical of more hydrophilic polymers (e.g., polyethylene terephthalate – PET). In particular, the polar component was increased from 1.21, 0.08, and 0.32 mJ•m–2 (untreated samples) to 10.95, 11.20, and 11.17 mJ•m–2 for the flamed samples S, M, and H, respectively, an increase attributed to the insertion of polar functional groups (hydroxyl and carbonyl) on the C–C backbone, as demonstrated by the X-ray photoelectron spectroscopy results.
Gum ghatti-cl-poly(acrylamide-aniline) interpenetrating network (IPN) was synthesized by a two-step aqueous polymerization method, in which aniline monomer was absorbed into the network of gum ghatti-cl-poly(acrylamide) and followed by a polymerization reaction between aniline monomers. Initially, semi-IPN based on acrylamide and gum ghatti was prepared by free-radical copolymerization in aqueous media with optimized process parameters, using N,N'-methylenebis-acrylamide, as cross-linker and ammonium persulfate, as an initiator system. Optimum reaction conditions affording maximum percentage swelling were: solvent [mL] =12, Acrylamide (AAm) [mol•L–1] = 1.971, Ammonium peroxydisulfate (APS) [mol•L–1] = 0.131•10–1, N,N'-methylene-bis-acrylamide (MBA) [mol•L–1] = 0.162•10–1, reaction time [min] = 210, temperature [°C] = 100 and pH = 7.0. The resulting IPN was doped with different protonic acids. The effect of the doping has been investigated on the conductivity and surface morphology of the IPN hydrogel. The maximum conductivity was observed with 1.5N HClO4 concentration. The morphological, structural and electrical properties of the candidate polymers were studied using scanning electron micrscopy (SEM), Fourier transform infrared spectroscopy FTIR and two-probe method, respectively.
The influence of the phase morphology on the shrinkage of injection molded plates from reactor based PP/EPR blends was investigated using a model series. The morphology of the dispersed phase – in terms of size and shape of the rubber particles as determined from scanning electron microscopy (SEM) – was found to correlate fairly well with the shrinkage determined in the flow and transverse direction of injection molded plates. In this respect it turned out to be elementary to consider the anisotropy of the particles rather than their average size alone. Additionally, the effect of the EPR design on the coefficient of linear thermal expansion (CLTE) was evaluated and brought into a relationship with the blend morphology.
The properties of novel thermoconductive and optically transparent nanocomposites have been reported. The composites were prepared by the impregnation of thermoset resin into crystallized anodic aluminum oxide (AAO). Crystallized AAO synthesized by annealing amorphous AAO membrane at 1200°C. Although through-plane thermal conductivity of nanocomposites improved up to 1.13 W•m–1•K–1 (39 vol% alumina) but their transparency was preserved (Tλ550 nm ~ 72%). Integrated annealed alumina phase, low refractive index mismatch between resin and alumina and formation of nano-optical fibers through the membrane resulted in such marvel combination. This report shows a great potential of these types of nanocomposites in ‘heat management’ of lightening devices.