WAITING
Search for articles
search


Editorial
|
|
Biowastes as reinforcements for future development of sustainable polymer composites
Sanjay Mavinkere Rangappa, Suchart Siengchin
Vol. 18., No.12., Pages 1176-1177, 2024
DOI: 10.3144/expresspolymlett.2024.89
Corresponding author: Suchart Siengchin

GRAPHICAL ABSTRACT



RELATED ARTICLES

Improvement thermal-mechanical properties of PHBV/hemp MCC biocomposite with ENR grafted silanized MFC as a sustainable additive: Investigation outdoor performance through weathering acceleration
Rattanawadee Hedthong, Thorsak Kittikorn, Suding Kadea, Phuthanet Bamrungsiri
Vol. 19., No.4., Pages 423-440, 2025
DOI: 10.3144/expresspolymlett.2025.31
This research aimed to enhance the properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) biocomposites by incorporating hemp microcrystalline cellulose (MCC). Additionally, to improve interfacial adhesion between PHBV and MCC phases, a compatibilizer consisting of epoxidized natural rubber (ENR) grafted with microfibrillated cellulose (MFC) modified by vinyltrimethoxysilane (ENR-vinyl silanized MFC) was introduced. The addition of 5 wt% MCC increases the flexural modulus by approximately 65%. The use of ENR-vinyl silanized MFC as a compatibilizer demonstrated improved compatibility, as observed in scanning electron microscope (SEM) images. After 30 days of accelerated weathering (QUV) exposure, the flexural strength of the PHBV-based biocomposite with ENR-vinyl silanized MFC and MCC (vinyl silanized MFC biocomposite) was superior to that of the other samples. The remaining flexural strength can be sequentially categorized as follows: vinyl silanized MFC > MFC > non-MFC > PHBV. The Tg of PHBV-based biocomposites showed no significant change. Interestingly, the crystallinity of the vinyl silanized MFC biocomposite was the highest among all materials and demonstrated higher hydrophobicity. This makes the vinyl silanized MFC biocomposite a suitable material for construction, furniture, and both exterior and interior decoration.
Recent advances in the applications of nanocellulose for sustainable development
Mohammad Mehdi Alighanbari, Firoozeh Danafar, Araam Namjoo, Asma Saeed
Vol. 19., No.1., Pages 15-46, 2025
DOI: 10.3144/expresspolymlett.2025.3
The environmental and ecological concerns drive researchers to synthesize functional materials using components from natural resources. Nanocellulose (NC), derived from plants, marine animals, or microorganisms, is a green material attracting attention due to its abundance, biocompatibility, and biodegradability. NC’s interstice properties enable the synthesis of functional nanocomposites in forms like aerogels, foams, paper, sheets, or hollow filaments. This review briefly describes NC classification and production while comprehensively presenting its mechanical, rheological, optical, and electrical properties, offering foundational knowledge for future research. Additionally, it highlights recent developments in NC-based products across fields such as papermaking, water treatment, civil engineering, electronics, cosmetics, food, and medicine. For the first time, this paper explores recent advances in NC molecular simulation, providing insights into structure, arrangement, and interactions through molecular dynamic simulation. Finally, future prospects for NC-based applications are discussed to encourage studies addressing current challenges.
Elucidating the synergistic interactions of macroalgae and cellulose nanofibers on the 3D structure of composite bioaerogel properties
Rayan Y. Mushtaq, Azfaralariff Ahmad, Abdul Khalil H.P.S., Rana Baker Bakhaidar, Waleed Y. Rizg, Shazlina Abd Hamid, Abdulmohsin J. Alamoudi, Che Ku Abdullah, Tata Alfatah
Vol. 18., No.7., Pages 760-777, 2024
DOI: 10.3144/expresspolymlett.2024.56
Seaweed from macroalgae and cellulose from nonwood materials have gained attention in various fields. This study explores how seaweed and cellulose nanofibers (CNF) interact to form 3D networks in composite bioaerogels. The ratio of CNF and seaweed was varied to see how it affects the aerogel’s inside and its properties. The observations show that the biocomposite aerogel is more rigid and shrinks less than using a single biopolymer. The CNF aerogel has a fine, thin network structure, and the seaweed aerogel has a thin sheet structure. The biocomposite aerogel combines both a fine network and a thin sheet structure. The composite aerogel’s mechanical properties are significantly influenced by seaweed composition. The introduction of CNF increases elasticity, while seaweed enhances firmness. Generated computer modelling revealed that the abundant hydroxyl groups in CNF facilitated the formation of intermolecular bonds with seaweed. The bonding led to increased adhesion and entanglement between biopolymers, consequently enhancing elasticity and establishing a stable intermolecular interaction. The 3D X-ray imaging model shows that the skeletal framework primarily consists of seaweed biopolymer, with CNF serving to reinforce this structure thus enhancing the mechanical properties and robustness of the composite bioaerogels.
Role of nanocellulose geometric structures on the properties of green natural rubber composites
Milanta Tom, Sabu Thomas, Bastien Seantier, Yves Grohens, Mohamed Pulikaparambil Kochaidrew, Ramakrishnan Subramanian, Tapas Ranjan Mohanty, Henri Vahabi, Hanna Joseph Maria, Jibin Keloth Paduvilan, Martin George Thomas
Vol. 18., No.6., Pages 638-655, 2024
DOI: 10.3144/expresspolymlett.2024.47
The augmented demand for sustainable nanocomposites has paved the way to explore naturally derived materials. Nanocellulose, with its bountiful sources and inherent properties, ranks top in the list of biofillers with a perspective of reducing the carbon footprint. A systematic study is required to understand the reinforcing effect of various types of nanocellulose. In the present work, we selected three types of nanocellulose, i.e., cellulose nanocrystal (CNC), cellulose nanofiber (CNF) and microfibrillated cellulose (MFC), to investigate the effect of geometrical structure on the properties of unvulcanized natural rubber (NR). Incorporating these fillers improved the tensile strength and modulus of natural rubber films significantly through reinforcement via filler network structure. The reinforcing effect of CNF was found to be higher compared to CNC and MFC, where an increase of 3.85 MPa in tensile strength from the neat sample was obtained. More uniform dispersion was evident through transmission electron microscopy, atomic force microscopy and Raman imaging for CNF in the rubber matrix. The structural properties were determined using Raman spectra and X-ray diffraction. The rheological studies revealed a good interaction between filler and NR. The work presented comprehensively compares different types of nanocellulose as reinforcing filler in NR matrix, which will help the researchers select an ideal type for their specific application and, thus, the proper usage of renewable resources, leading to sustainability and a circular economy.
Studies of the in vivo bioresorption rate of composite filaments on the basis of polylactide filled with chitin nanofibrils or silver nanoparticles
Konstantin Vadimovich Malafeev, Olga Andreevna Moskalyuk, Vladimir Evgenyevich Yudin, Dmitry Nikolayevich Suslov, Elena Nikolaevna Popova, Elena Mikhaylovna Ivan’kova, Alena Alexandrovna Popova
Vol. 18., No.3., Pages 296-308, 2024
DOI: 10.3144/expresspolymlett.2024.21
The rates of in vivo bioresorption of composite monofilaments based on polylactide (PLA) containing chitin nanofibrils of two types (pure chitin (CN) or chitin modified with poly(ethylene glycol) (CN-PEG)) or silver nanoparticles stabilized with poly(N-vinylpyrrolidone) (Poviargol) were studied. The in vivo bioresorption rate and its dependence on the degree of orientational drawing of the samples (which varied from 1 in non-oriented samples to 4 in oriented samples) were investigated up to 12 months after implantation. Bioresorption of the samples was monitored using differential scanning calorimetry, scanning electron microscopy, and mechanical tests. Using the differential scanning calorimetry (DSC) method, it was shown that there is a gradual decrease in molecular weight due to a decrease in the temperatures of phase transitions and changes in peak shapes. It has also been shown that the addition of fillers containing water-soluble polymers accelerates the bioresorption of composite sutures. A thread made from pure PLA lost half its strength by the 9th month of implantation, whereas for threads with the addition of CNPEG or Poviargol, this happened after 3.5 months. This causes leaching of water-soluble agents and changes in the supramolecular structure of the filament. This study shows the promise of using these composite threads as a suture material.
Published by:

Budapest University of Technology and Economics,
Faculty of Mechanical Engineering, Department of Polymer Engineering